Введение в прикладную комбинаторику
350 р.
Автор:
Кофман А.
(4)
Издательство: Наука.
Место издания: Москва
Тип переплёта: Твердый переплет.
Год издания: 1975
Формат: Увеличенный формат.
Состояние: Хорошее.
Количество страниц: 480с.
На остатке: 1
350 р.
Аннотация
В предлагаемой книге известного французского математика и педагога А. Кофмана излагаются основы прикладной комбинаторики. В ней рассматриваются математические вопросы, представляющие большой интерес для практических приложений, а именно: элементы теории перечисления, теории графов, оптимизации и некоторые другие. Наряду с доказательствами основных предложений приводится большое число практических рецептов и алгоритмов решения комбинаторных задач, позволяющих зачастую получить численный результат. При написании книги автор стремился к тому, чтобы читатель, не обладающий предварительной подготовкой, получил дополнительный стимул к изучению этой области математики. Этому способствует большое количество примеров и иллюстративного материала. Простота и наглядность изложения делают ее доступной самому широкому кругу читателей.
(564 продаж с 2020 г.)
Оплата: Только предоплата
Способы оплаты:
- Банковский перевод;
- Наличными из рук в руки;
- Оплата на карту СБЕРБАНКА;
- Яндекс.Деньги;
Доставка: Только по России
Способы доставки:
- почта России;
- самовывоз : Ростов-на-Дону, ул. Темерницкая, 32;
Стоимость доставки:
- По тарифам Почты России + упаковка
Отправка заказов:
- Отправка в течении 2 дней
Почтовый идентификатор:
- высылается всегда
Дополнительные сканы и фото:
- Высылаются для книг дороже 300 р.
- До заказа
Торг по цене:
- не возможен
Хранение неоплаченных заказов:
- 3 (дней)
Аннотация
В предлагаемой книге известного французского математика и педагога А. Кофмана излагаются основы прикладной комбинаторики. В ней рассматриваются математические вопросы, представляющие большой интерес для практических приложений, а именно: элементы теории перечисления, теории графов, оптимизации и некоторые другие. Наряду с доказательствами основных предложений приводится большое число практических рецептов и алгоритмов решения комбинаторных задач, позволяющих зачастую получить численный результат. При написании книги автор стремился к тому, чтобы читатель, не обладающий предварительной подготовкой, получил дополнительный стимул к изучению этой области математики. Этому способствует большое количество примеров и иллюстративного материала. Простота и наглядность изложения делают ее доступной самому широкому кругу читателей.
Аналогичные книги смотрите в разделах: