Краткий курс теории аналитических функций
Автор:
Маркушевич А. И.
(5)
Издательство: Наука
Место издания: Москва
Тип переплёта: твёрдый
Год издания: 1966
Формат: Стандартный
Состояние: Очень хорошее-хорошее.см
Количество страниц: 388 с.
На остатке: 1
140 р.
Аннотация
Университетский курс в объеме, прудсмотренном программой математических факультетов. Последнее издание выходило в 1966 г. В новом издании автором внесены некоторые изменения в связи с требованиями программы, а также запросами читателей, самостоятельно изучающих предмет. В частности, включены дополнительно сведения об эллиптических функциях Вейерштрасса, о целых функциях экспоненциального типа с применениями к теории аналитического продолжения. теорема о монодромии, теорема Рунге о разложении аналитической функции в ряд многочленов и понятие о модулярной функции Шварца с приложением к доказательству малой теоремы Пикара. В целом книга остается учебным пособием, ставящим целью доступное и пясняемой многими примерами изложение основного содержания университетского курса. Список литературы для дальнейшего изучения обновлен.
(1888 продаж с 2019 г.)
Почтовый идентификатор:
- высылается всегда
Дополнительные сканы и фото:
- Не высылаются
Торг по цене:
- не возможен
Хранение неоплаченных заказов:
- 3 (дней)
Аннотация
Университетский курс в объеме, прудсмотренном программой математических факультетов. Последнее издание выходило в 1966 г. В новом издании автором внесены некоторые изменения в связи с требованиями программы, а также запросами читателей, самостоятельно изучающих предмет. В частности, включены дополнительно сведения об эллиптических функциях Вейерштрасса, о целых функциях экспоненциального типа с применениями к теории аналитического продолжения. теорема о монодромии, теорема Рунге о разложении аналитической функции в ряд многочленов и понятие о модулярной функции Шварца с приложением к доказательству малой теоремы Пикара. В целом книга остается учебным пособием, ставящим целью доступное и пясняемой многими примерами изложение основного содержания университетского курса. Список литературы для дальнейшего изучения обновлен.
Аналогичные книги смотрите в разделах: