Дополнительные главы теории обыкновенных дифференциальных уравнений
Автор:
Арнольд В. И.
(4)
Издательство: Наука
Место издания: Москва
Тип переплёта: твёрдый
Год издания: 1978
Формат: Стандартный
Состояние: Очень хорошее-хорошее. Вмятина на обложке. Владельческая подпись на обложке.
Количество страниц: 304 с.
На остатке: 1
200 р.
Аннотация
В книге изложен ряд основных идей и методов, применяемых для исследования обыкновенных дифференциальных уравнений и в их естественно-научных приложениях. Элементарные методы интегрирования рассматриваются с точки зрения общематематических понятий (разрешение особенностей, группы Ли симметрий, диаграммы Ньютона и т. д.).Теория уравнений с частными производными первого порядка изложена на основе геометрии контактной структуры. Главы книги посвящены качественной теории дифференциальных уравнений (структурная устойчивость, У-системы), асимптотическим методам (усреднению, адиабатическим инвариантам), аналитическим методам локальной теории в окрестности особой точки или периодического решения (норамльные формы Пукнкаре), а также теории бифуркаций фазовых портретов при изменении параметров (мягкое и жесткое возбуждение автоколебаний при потере устойчивости). Книга рассчитана на широкие круги математиков - от студентов, знакомых лишь с простейшими понятиями анализа и алгебры, до преподавателй, научных работников и всех читателей, применяющих дифференциальные уравнения в физике и естественных науках.
(1884 продаж с 2019 г.)
Почтовый идентификатор:
- высылается всегда
Дополнительные сканы и фото:
- Не высылаются
Торг по цене:
- не возможен
Хранение неоплаченных заказов:
- 3 (дней)
Аннотация
В книге изложен ряд основных идей и методов, применяемых для исследования обыкновенных дифференциальных уравнений и в их естественно-научных приложениях. Элементарные методы интегрирования рассматриваются с точки зрения общематематических понятий (разрешение особенностей, группы Ли симметрий, диаграммы Ньютона и т. д.).Теория уравнений с частными производными первого порядка изложена на основе геометрии контактной структуры. Главы книги посвящены качественной теории дифференциальных уравнений (структурная устойчивость, У-системы), асимптотическим методам (усреднению, адиабатическим инвариантам), аналитическим методам локальной теории в окрестности особой точки или периодического решения (норамльные формы Пукнкаре), а также теории бифуркаций фазовых портретов при изменении параметров (мягкое и жесткое возбуждение автоколебаний при потере устойчивости). Книга рассчитана на широкие круги математиков - от студентов, знакомых лишь с простейшими понятиями анализа и алгебры, до преподавателй, научных работников и всех читателей, применяющих дифференциальные уравнения в физике и естественных науках.
Аналогичные книги смотрите в разделах: