Алгебра и геометрия интегрируемых гамильтоновых дифференциальных уравнений

Товар продан.
Авторы:
Фоменко А. Т.
(9)
Трофимов В. В.
(0)
Серия: Математика и ее приложения (0)
Издательство: Факториал
Место издания: Москва
Тип переплёта: твёрдый
Год издания: 1995
Формат: Стандартный
ISBN: 5-88688-002-X
Состояние: Как новая.
Всего томов: 1
На остатке: 0
Товар продан.
Аннотация
Посвящена интересному и актуальному направлению,,бурно развивающемуся в последние годы, в рамках которого открыты важные методы интегрирования гамильтоновых уравнений и получены новые результаты о геометрической структуре интегрируемых уравнений. Большинство вопросов впервые изложены в виде, доступном для широкого круга специалистов.
Цель данной книги - доступно рассказать о некоторых новых методах интегрирования гамильтоновых дифференциальных уравнений на симплектических многообразиях. Проблема интегрирования дифференциальных уравнений как обыкновенных, так и в частных производных является классической. К настоящему времени в математике имеется достаточно мощный арсенал различных средств, используемых при интегрировании уравнений. Выбор средств и методов, которые используются при решении конкретных задач, возникающих, например, в геометрии, механике или математической физике, сильно зависит от того, какой смысл мы вкладываем в выражение "решить уравнение". Например, если искать решение в каком-нибудь функциональном пространстве, то естественно привлекать методы функционального анализа. Выделим три аспекта в изучении дифференциальных уравнений: а) явное интегрирование; б) качественные методы; в) интегрируемость по Лиувиллю.
Традиционный подход к изучению свойств решений дифференциальных уравнений состоит в том, что сначала явно определяют полное множество решений и лишь потом анализируют их свойства. Именно так поступали Лежандр, Лагерр, Бессель, Эрмит при изучении дифференциальных уравнений второго порядка. Однако, помимо уравнений данного типа, в различных приложениях возникают линейные или нелинейные уравнения выше второго порядка. Возникает вопрос о возможности отыскания полного набора решений для качественного описания поведения общих решений уравнений, моделирующих интересующую нас систему.
Для научных работников - математиков, физиков, механиков, аспирантов и студентов соответствующих специальностей. Может быть использована как пособие по специальным курсам: симплектическая геометрия, интегрируемые системы и др.
(423 продаж с 2019 г.)
Оплата: Только предоплата
Способы оплаты:
- Банковский перевод;
- Наличными из рук в руки;
- Почтовый перевод;
Доставка: По согласованию
Способы доставки:
- почта России;
- самовывоз : ;
Стоимость доставки:
- По тарифам Почты России + упаковка
Отправка заказов:
- Отправка в течении 3 дней
Почтовый идентификатор:
- высылается всегда
Дополнительные сканы и фото:
- Не высылаются
Торг по цене:
- не возможен
Хранение неоплаченных заказов:
- 3 (дней)
Аннотация
Посвящена интересному и актуальному направлению,,бурно развивающемуся в последние годы, в рамках которого открыты важные методы интегрирования гамильтоновых уравнений и получены новые результаты о геометрической структуре интегрируемых уравнений. Большинство вопросов впервые изложены в виде, доступном для широкого круга специалистов.
Цель данной книги - доступно рассказать о некоторых новых методах интегрирования гамильтоновых дифференциальных уравнений на симплектических многообразиях. Проблема интегрирования дифференциальных уравнений как обыкновенных, так и в частных производных является классической. К настоящему времени в математике имеется достаточно мощный арсенал различных средств, используемых при интегрировании уравнений. Выбор средств и методов, которые используются при решении конкретных задач, возникающих, например, в геометрии, механике или математической физике, сильно зависит от того, какой смысл мы вкладываем в выражение "решить уравнение". Например, если искать решение в каком-нибудь функциональном пространстве, то естественно привлекать методы функционального анализа. Выделим три аспекта в изучении дифференциальных уравнений: а) явное интегрирование; б) качественные методы; в) интегрируемость по Лиувиллю.
Традиционный подход к изучению свойств решений дифференциальных уравнений состоит в том, что сначала явно определяют полное множество решений и лишь потом анализируют их свойства. Именно так поступали Лежандр, Лагерр, Бессель, Эрмит при изучении дифференциальных уравнений второго порядка. Однако, помимо уравнений данного типа, в различных приложениях возникают линейные или нелинейные уравнения выше второго порядка. Возникает вопрос о возможности отыскания полного набора решений для качественного описания поведения общих решений уравнений, моделирующих интересующую нас систему.
Для научных работников - математиков, физиков, механиков, аспирантов и студентов соответствующих специальностей. Может быть использована как пособие по специальным курсам: симплектическая геометрия, интегрируемые системы и др.
Аналогичные книги смотрите в разделах: